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Abstract. Local spatiotemporal non-stationarity occurs in various natural and socioeconomic processes. Many studies have 9 

attempted to introduce time as a new dimension into the geographically weighted regression model (GWR), but the actual 10 

results are sometimes not satisfied or even worse than the original GWR model. The core issue here is a mechanism for 11 

weighting effects of both temporal variation and spatial variation. In many geographical and temporal weighted regression 12 

models (GTWR), the concept of time distance has been inappropriately treated as time interval. Consequently, the combined 13 

effect of temporal and spatial variation is often inaccurate in the resulting spatiotemporal kernel function. This limitation 14 

restricts the configuration and performance of spatiotemporal weights in many existing GTWR models. To address this 15 

issue, we propose a new spatiotemporal weighted regression (STWR) model and the calibration method for it. A highlight of 16 

STWR is a new temporal kernel function, in which the method for temporal weighting is based on the degree of impact from 17 

each observed point to a regression point. The degree of impact, in turn, is based on the rate of value variation of the nearby 18 

observed point during the time interval. The updated spatiotemporal kernel function is based on a weighted combination of 19 

the temporal kernel with a commonly used spatial kernel (Gaussian or bi-square) by specifying a linear function of spatial 20 

bandwidth versus time. Three simulated datasets of spatiotemporal processes were used to test the performance of GWR, 21 

GTWR and STWR. Results show that STWR significantly improves the quality of fit and accuracy. Similar results were 22 

obtained by using real-world data for the precipitation hydrogen isotopes (δ2H) in Northeastern United States. The Leave-23 

one-out cross-validation (LOOCV) test demonstrates that, comparing with GWR, the total prediction error of STWR is 24 

reduced by using recent observed points. Prediction surfaces of models in this case study show that STWR is more localized 25 
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than GWR. Our research validates the ability of STWR to take full advantage of all the value variation of past observed 26 

points. We hope STWR can bring fresh ideas and new capabilities for analyzing and interpreting local spatiotemporal non-27 

stationarity in many disciplines. 28 

 29 

Key words: Geographical and temporal weighted regression; Geographically weighted regression; Temporal non-30 

stationarity; Spatial analysis; Spatiotemporal variations; Spatiotemporal weighted regression. 31 

 32 

1 Introduction 33 

Time, space and attributes are three essential characteristics in geographic entities, and they are recorded to reflect the state 34 

and evolution of various real-world phenomena and processes. Because space and time frame all aspects of the discipline of 35 

geography (Goodchild, 2013), it is important to observe the spatiotemporal variations and explore appropriate analytical 36 

methods to study and reason the internal mechanisms and evolutionary laws. In recent years, new platforms and instruments 37 

have brought increasingly massive spatiotemporal data, such as the time- and geo-tagged sensor monitoring records and 38 

remote sensing images. Those big data create great opportunities for studying human and environmental dynamics from 39 

different perspectives, such as the patterns of human behavior (Chen et al., 2011), environmental risk assessment (Sun et al., 40 

2015), and disease outbreaks (Takahashi et al., 2008). Nevertheless, although spatiotemporal modeling has been a long-term 41 

research focus in the field of geographical information science (GIScience) (Cressie, 1991; Cressie and Wikle, 2015), the 42 

models are not mature yet and challenges still exist (Fotheringham et al., 2015), which call for further work.  43 

In this paper, the technological development and discussion focus on modeling local spatiotemporal variations within 44 

the framework of geographically weighted regression (GWR). GWR is a method for modeling spatially heterogeneous 45 

processes (Brunsdon et al., 1996, 1998; Fotheringham et al., 2003). It has been applied in a variety of areas, such as climate 46 

science (Brown et al., 2012), geology (Atkinson et al., 2003), mineral exploration (Wang et al., 2015), transportation analysis 47 

(Cardozo et al., 2012), crime studies (Cahill and Mulligan, 2007; Wheeler and Waller, 2009), environmental science (Mennis 48 

and Jordan, 2005), and house price modeling (Fotheringham et al., 2015). GWR calibrates a separate regression model at 49 

each location through a data-borrowing scheme, in which distance-weights can be calculated by drawing on data from 50 
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neighboring observations of each regression point (Fraser et al., 2012). This operation complies with Tobler’s first law of 51 

geography - “Everything is related to everything else, but near things are more related than distant things” (Tobler, 1970). 52 

Numerous studies have been devoted to incorporating the temporal dimension into spatial regression (Pace et al., 2000; 53 

Gelfand et al., 2004; Crespo et al., 2007; Cressie and Wikle, 2015). However, most of these studies assume that temporal 54 

effects are constant over space from a global perspective of modeling (Fotheringham et al., 2015). To address that issue, 55 

Crespo et al. (2007) extended GWR by developing spatiotemporal bandwidths that account for varying local spatial effects 56 

across time. Huang and Wu (2010, 2014) proposed a geographical and temporal weighted regression model (GTWR) with a 57 

method of measuring the spatiotemporal ‘closeness’ and a parameter ratio 𝜏 to deal with different measured units in time 58 

and space. Although the approach can address the issue to some extent, Fotheringham et al. (2015) pointed out that a sole 59 

measurement of integrated spatial and temporal distances can be misleading as location and time are usually measured at 60 

different scales, and he stated that the calculation of distance in three dimensions (time and two-dimensional space) remains 61 

a challenge. 62 

A spatiotemporal kernel function, which consists of mixed spatial and time-decay bandwidths, was proposed by 63 

Fotheringham et al. (2015). Nevertheless, the stepwise strategy applied in this function for bandwidth optimization does not 64 

always seem reasonable. In practice, this function needs to first find and fix an optimized spatial bandwidth, then it will find 65 

the optimized temporal bandwidth. After that, the spatiotemporal weight will be calculated. This stepwise search process 66 

means that the function is not able to optimize both temporal and spatial bandwidths at the same time. However, a more 67 

reasonable thought is that the spatiotemporal bandwidth and its weight are simultaneously affected by both spatial and 68 

temporal effects of a process. There should be ways to further improve the spatiotemporal kernel function in Fotheringham 69 

et al. (2015).  70 

The aim of this paper to develop a better methodology for the spatiotemporal kernel function. Following Tobler’s first 71 

law, we propose an algorithm, the spatiotemporal weighted regression (STWR). In STWR, the velocity of value change is 72 

higher related if they were in near time and space. Therefore, STWR can borrow data not only from nearby locations, but 73 

also from nearby value variation through time. The latter is what we call as “time distance” in STWR. The time distance is 74 

not the concept of time interval, but the rate of value variation through time. It is a kind of value change that reflects the 75 
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temporal effect of nearby points to the regression point. Accordingly, our local spatiotemporal regression analysis model can 76 

take advantage of the variation in data to identify temporal non-stationarity, which is an advantage comparing with GWR 77 

and GTWR.  78 

Before giving more details about STWR, we can further clarify the meaning of a few concepts. A common issue in the 79 

existing GTWR models is that they use the concept of time interval, instead of the above-mentioned “time distance”, to 80 

calculate temporal and spatiotemporal weights. A time interval is the period between two observed time stages. A time 81 

distance, in the context of STWR, is the rate of value variation between an observed point and a regression point through a 82 

time interval. We can think about the following scenario for a group of points. The values of some points do not change or 83 

change slightly from time A to time B, while a few other points may change greatly in that period. However, many GTWR 84 

models ignore the difference in the value changes of observed points during a period of time, and regard that all these points 85 

have the same temporal effect to their neighbor regression point. It is hard to believe that some unchanged observations 86 

constantly affect their nearby regression points during the observed time interval. Intuitively, different variations of the 87 

observed points have different temporal effects. For example, the faster the house price of a point change, the stronger the 88 

temporal effect is to the house price at its nearby point. Moreover, the rate of value changes at different observed points 89 

(time non-stationary) may also have spatial heterogeneity. The data values observed at different points are results of mixed 90 

spatiotemporal effects and some other unknown factors (including errors). Therefore, using only time interval in the 91 

calculation of temporal and spatiotemporal weights might interpret local spatiotemporal effect imprecisely. 92 

There are other issues in the temporal kernel functions and the multiplication form of spatial and temporal kernels used 93 

by the existing GTWR models (Huang et al., 2010; Wu et al., 2014; Fotheringham et al., 2015). When calculating the 94 

spatiotemporal effect, these models generally use time intervals and the common kernel functions to calculate temporal 95 

weights, such as Gaussian kernel or bi-square kernel. However, an appropriate temporal kernel function should not be the 96 

same as the spatial kernel function, because space is in two or three dimensions while time is in one dimension and one 97 

direction. Each regression point can borrow observed points from any directions in space but only use points from the past 98 

rather than from the future. Moreover, these models directly calculate the integrated spatiotemporal weights by using a 99 

multiplication of the spatial and temporal weights. For example, if the temporal effect weight 0.1, and the spatial effect 100 

https://doi.org/10.5194/gmd-2019-292
Preprint. Discussion started: 18 March 2020
c© Author(s) 2020. CC BY 4.0 License.



 

5 

weight is 0.9, then those models will generate a spatiotemporal weight of 0.09. Such a simple multiplication may cause 101 

underestimation of weights. For instance, to calculate the impact (weight) of the historical house price of B on the current 102 

house price of A, there can be many possibilities. One is that if the overall house price changes quickly, then the historical 103 

price of B may have little effect on the price of A, and the weight will be small. Another possibility is that the house prices 104 

of locations around A have not changed much during a long period, then the historical price of B may still have a relatively 105 

big impact on the current price of A. In this case, the weight will be seriously underestimated if the multiplication form of 106 

space and time weights is used. 107 

 The above-mentioned limitations and issues in GWR and GTWR are the driving force behind our development of 108 

STWR. The remainder of this article is organized as follows. Section 2 introduces the STWR model formulation, including 109 

temporal kernel and spatiotemporal kernel functions. Section 3 describes the methods for bandwidth selection and calibration 110 

when STWR is in operation. Section 4 presents results of applying GWR, GTWR and STWR to three sets of simulated data. 111 

Section 5 presents experiment results with real-world precipitation hydrogen isotope data. In Section 6, we close the article 112 

with a summary of the key findings and a few thoughts for future research. 113 

  114 

2 The Core Model of STWR 115 

2.1 The strategy of time distance decay  116 

Since GWR is the background of our work, it is helpful to first give a brief overview of the GWR framework. The basic 117 

formulation of GWR can be described in two equations below (Fotheringham et al., 2003). 118 

                               𝑦! = 𝛽"(𝑢! , 𝑣!) + ∑ 𝛽#(𝑢! , 𝑣!)𝑥!# + 𝜀!#                          (1) 119 

                            𝛽.#(𝑢! , 𝑣!) = (𝑋$𝑊(𝑢! , 𝑣!)𝑋)%&𝑋$𝑊(𝑢! , 𝑣!)𝑦               (2) 120 

In Equation 1, 𝑦! is a response variable of regression point 𝑖 at a location with the coordinates (𝑢! , 𝑣!). 𝑥!# is the 𝑘'ℎ 121 

dependent variable, and 𝜀! denotes the error term for the 𝑖'ℎ observed point. A key difference between GWR and the 122 

traditional global regression method, such as Ordinary Least Squares (OLS), is that GWR allows the coefficient 𝛽#(𝑢! , 𝑣!) 123 

vary spatially to identify spatial heterogeneity. Equation 2 represents the GWR calibration in a matrix form. 𝑊(𝑢! , 𝑣!) is a 124 

diagonal weighting matrix specific to location 𝑖, which is calibrated by a specified kernel function with a given bandwidth. 125 
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Every element 𝑤! in the weighting matrix reflects the impact from another observed point to the regression point. A bigger 126 

𝑤! value means a higher impact.  127 

GWR has a strategy of spatial distance decay impact on a regression point (Brunsdon et al., 1998; Fotheringham et al., 128 

2003). A similar “time distance decay” strategy was also discussed in several recent GTWR models (Crespo et al., 2007; 129 

Huang et al., 2010; Wu et al., 2014; Fotheringham et al., 2015). Yet, those models did not fully reflect the effect of time 130 

distance decay. Sample points are observed at different time stages, and those data points closer in time distance to a 131 

regression point have more impact on the regression point than those farther away. The time distance refers to the value 132 

variation rate between an observed point and a regression point during a certain time interval. For example, in Fig. 1, there 133 

are four time stages from old to new: T-s, T-q, T-p and T. Through a fitting and calibration process, the spatiotemporal 134 

bandwidth will be fitted, and the spatiotemporal effects (weights) from observed points to a regression points at time stage T 135 

will be calculated by a specific spatiotemporal kernel function. Then, in prediction, the value of a regression point at time 136 

stage T can be estimated. Thus, the observed points at time stage T only have spatial effect on the regression point (Fig. 1). 137 

There is temporal effect from data points at time stages T-p and T-q (shown as stars, pentagons and triangles in the planes of 138 

T-p and T-q in Fig. 1), within a certain spatial bandwidth 𝑏($ at each time stage, to the regression point. The time distance 139 

decay should reflect that different variations of the observed points have different temporal effects. However, as mentioned 140 

in the previous section, many existing GTWR models have applied a strategy of time interval decay instead of time distance 141 

decay. Consequently, they regard that all the observed points have the same temporal effect to their neighbor regression 142 

point.  143 

 144 
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 145 

Fig. 1. Spatiotemporal impacts of observed points with different rates of value change on a regression point at time stage T. 146 

Temporal bandwidth is the length of time from the intersection point A of the spatiotemporal bandwidth and the time line to 147 

the regression point. Spatial bandwidth and spatiotemporal bandwidth are illustrated in the figure legend.  148 

 149 

Compared to existing GTWR models, the time distance decay strategy of STWR considers the effect of different 150 

variations of observed points through time. For example, some data points may have higher impact on the regression point, 151 

though their spatial distance is farther than other points. Fig. 1 illustrates that the locations of some star-shape points are 152 

farther away from the regression point than some pentagon-shape points at time stage T-p, which denotes that there exist 153 

mixed impacts (spatial impact and temporal impact) on the regression point. The temporal impacts depend on the rate of 154 

value variation, which is the value difference between the observed point and the regression point divided by a time interval 155 

(e.g., [T-p, T] and [T-q, T-p] each is a time interval). If the observed time stage is too long ago or the rate of value variation 156 

is too small, and exceeds the limit of optimized temporal bandwidth for the regression point (as shown by observations at 157 

time stage T-s), the data points at this time stage may have no impact on the regression point. Even though some of those 158 

data points may have huge difference in value and are close to the regression point in space, they are not within the range of 159 
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the optimized temporal bandwidth. Spatial bandwidths also vary along the time line, and usually the bandwidth gets larger 160 

when the observation time is closer to the time stage of the regression point (Fig. 1). 161 

2.2 The spatiotemporal kernel function of STWR 162 

We assume that a set of observed points 𝑂)' = {𝑂*! , 𝑂*!"# , . . . 𝑂*!"$|𝛥𝑡 = [𝑡 − 𝑞, 𝑡]} are collected during a certain time 163 

interval 𝛥𝑡 in a study area, where 𝑡 represents the current time stage and 𝑁'%! , 𝑖 ∈ {0,1,2, . . . , 𝑞}(𝑁' = 𝑁'%") denotes the 164 

number of observed points at each recorded time. As the idea described above, we can borrow neighbor points in space and 165 

their value variation during certain recent time intervals, so we can still use Equation 1 to generate local estimates. The 166 

weight matrix 𝑊 in GWR usually depends on the spatial kernel (Fotheringham et al., 2015). In STWR, we need to consider 167 

the temporal effect, so the form of 𝑊 is different from that in GWR. Correspondingly, we should have a spatiotemporal 168 

kernel, which can be understood as a temporal extension based on the spatial kernel. However, if we use a multiplication 169 

form to combine the temporal kernel and the spatial kernel (Huang et al., 2010; Wu et al., 2014; Fotheringham et al., 2015), 170 

we will face the problem of time and space interaction as mentioned above in the Introduction section. To address that issue, 171 

we design a weighted average form for the spatiotemporal kernel. 172 

                   𝑤!+($' = (1 − 𝛼)𝑘,(𝑑,!+ , 𝑏($) + 𝛼𝑘$(𝑑'!+ , 𝑏$), 0 ≤ 𝛼 ≤ 1              (3) 173 

In Equation 3, 𝑤!+($'  is the weight at time 𝑡 and at the observed location 𝑗. 𝑘, and 𝑘$ are the spatial and temporal kernel, 174 

respectively, and they both have a value range of 0 to 1. 𝛼 is an adjustable parameter to scale the temporal and spatial 175 

effects, which can be optimized with the bandwidth selections. 𝑑,!+ and 𝑑'!+ are the spatial (Euclidean) and temporal 176 

distance between the regression point 𝑖 and an observed data point 𝑗, respectively. 𝑏($ is the spatial bandwidth 𝑏( at a 177 

certain time stage 𝑇, and 𝑏$ denotes the temporal bandwidth.  178 

The time distance, as mentioned above, is not the time interval but the rate of value variation between an observed point 179 

and a regression point through a time interval. Following the time distance decay strategy in STWR, we can further derive 180 

the temporal kernel 𝑘$ as shown below.   181 

               𝑤!+)'' =

⎩
⎨

⎧
M -

&./01(%
%('((!)"'*(!"$))/'*(!"$)%

,!/-.
)
− 1N , 𝑖𝑓	0 < 𝛥𝑡 < 𝑏$

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

             (4) 182 
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In Equation 4, 𝑦!(') − 𝑦+('%4) is the subtraction of the regression point 𝑖’s observed value at 𝑡 from the point 𝑗’s observed 183 

value at 𝑡 − 𝑞, which denotes the value change during the time interval 𝛥𝑡. The internal part of the exponential function is 184 

negative, in order to make the weight 𝑤!+)''  range from 0 to 1. The faster the value change rate is, the bigger the weight is, 185 

which means that the time impact is larger. When the time interval 𝛥𝑡 is out of the range (0, 	𝑏$), the weight will be set to 186 

zero, which denotes that there is no impact because the observed variation is too far to affect the current moment. For 187 

example, if the price of a nearby house has changed a long time ago, it may have little or no impact on the present house 188 

price. But if the house price had a sharp change recently, it will have a big impact on the present house price. Therefore, the 189 

faster the rate of observed value changes and the shorter the time interval is, the greater the impact on the regression point 190 

will be. Compared with GTWR models, the advantage of STWR is that the temporal kernel function 𝑘$ can better leverage 191 

the variation data.  192 

To calibrate the weight value 𝑤!+($' , we need a spatial kernel function. The most widely used kernel functions are bi-193 

square and Gaussian (Fotheringham et al., 2003), which are given in Equations 5 and 6, respectively.  194 

               𝐵𝑖 − 𝑠𝑞𝑢𝑎𝑟𝑒:						𝑤!+( = YZ1 − (
5/(*
60
)-[

-
, 𝑖𝑓	𝑑,!+ < 𝑏,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (5) 195 

 196 

                              𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛:				𝑤!+( = 𝑒𝑥𝑝 `− &
-
a
5/(*
60
b
-
c                   (6) 197 

In Equations 5 and 6, 𝑏( is the spatial bandwidth. Derived from 𝑏( and 𝑏($, 𝑏(' is the initial spatial bandwidth at the given 198 

time stage 𝑡 of the regression point (i.e., 𝑡 is the initial time for searching observed points in the past). Many functions can 199 

be specified for the change of spatial bandwidth during the time intervals. Because in most cases it will have smooth change 200 

during a certain short time interval, we assume that the spatial bandwidth changes linearly along with time, as defined 201 

bellow. 202 

                  𝑏($ = 𝑏(' − 𝑡𝑎𝑛𝜃 ∗ 𝛥𝑡, −
7
-
< 𝜃 < 7

-
                              (7) 203 

In Equation 7, 𝑡𝑎𝑛𝜃 denotes the slope of spatial bandwidth change in correspondence to 𝛥𝑡, and 𝑏(' denotes the initial 204 

spatial bandwidth at 𝑡. Importing Equations 4 to 7, the calibration of Equation 3 can be further derived into Equations 8 and 205 
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9, which are our spatiotemporal kernel functions in STWR. Equations 8 and 9 are based on the bi-square and Gaussian 206 

kernel, respectively. With the STWR spatiotemporal kernel, we only need to optimize the parameters 𝛼 and 𝜃 instead of the 207 

spatial bandwidth 𝑏($. However, we shall traverse all the observed points at the initial time stage 𝑡 to find the optimized 208 

spatial bandwidth 𝑏('. Moreover, we shall also traverse all the time stages to find the optimized temporal bandwidth 𝑏$.  209 

      (8) 210 

         (9) 211 

 212 

3 STWR in Operation  213 

3.1 Bandwidth selection and parameter estimation 214 

Some goodness-of-fit diagnostics (Loader, 1999) are widely used in general GWR-based models, such as the cross-215 

validation (CV) score (Cleveland, 1979; Bowman, 1984) and the Akaike Information Criterion (AIC) (Akaike, 1973; 216 

Akaike, 1998). For STWR, we use cross-validation (CV) as the default searching criteria and we also calculate the value of a 217 

corrected version of AIC (Hurvich et al., 1998), the AICc, which is defined bellow.  218 

         𝐴𝐼𝐶8 = 2𝑛 𝑙𝑛( 𝜎k) + 𝑛 𝑙𝑛( 2𝜋) + 𝑛 m 9.':(()
9%-%':(()

n                       (10) 219 

In Equation 10, n is the sample size, 𝜎k is the estimated standard deviation of the error term, and 𝑡𝑟(𝑆) denotes the trace of 220 

the hat matrix 𝑆 (Hoaglin and Welsch, 1978).  221 

2
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Although there is no need to optimize spatial bandwidth 𝑏($ of the past time stages in STWR, other parameters such as 222 

𝛼 and 𝜃 need to be optimized. Also, we should give the 𝑏$ and initial 𝑏(' through trials. For more potential combinations 223 

of these parameters for different spatiotemporal processes, a more reasonable limit and optimization procedure is hence 224 

needed.  225 

3.2 Calibration of STWR  226 

Calibration of the STWR models can be conducted by using weighted least squares. The estimator for the coefficients at 227 

location (𝑢! , 𝑣!) is shown below. 228 

                   𝛽.'(𝑢! , 𝑣!) = [(𝑋;,!
$ 𝑊)'(𝑢! , 𝑣!)𝑋;,!)

%&𝑋;,!𝑊)'(𝑢! , 𝑣!)]𝑦;,!                      (11) 229 

In Equation 11, 𝑋;,! 	and	𝑦;,! are observed independent and dependent variables of 𝑂)' respectively. 𝑋;,!
$  is the 230 

transpose of 𝑋;,!. 𝑊)'(𝑢! , 𝑣!) denotes the spatiotemporal weight matrix for observed points at different locations to the 231 

regression point (𝑢! , 𝑣!) at different time stages during 𝛥𝑡. For a better illustration, we show the weight matrix 𝑊)' during 232 

the time interval 𝛥𝑡 in Fig. 2. The matrix 𝑊)' here is a bit different form the 𝑊(𝑢! , 𝑣!) in Equation 2. The records in the 233 

𝑖'ℎ row of 𝑊)' are the diagonal elements in 𝑊(𝑢! , 𝑣!), and only no zero values are used to calibrate the coefficients 𝛽.# for 234 

each regression point. Thus, each row r of this hat matrix is shown below.  235 

                           𝑟!' = 𝑋!'(𝑋)'$𝑊!)'𝑋)')%&𝑋)'𝑊!)'                                  (12) 236 

In Equation 12, 𝑋!' is the 𝑖'ℎ row of the matrix of independent variables at 𝑡. 𝑋)' is the matrix of independent variables 237 

during a time interval 𝛥𝑡, and 𝑋)'$  is its transpose. Although the 𝑋)' in Equation 12 is equal to the 𝑋;,! in Equation 11 in 238 

the fitting and calibration of STWR, we distinguish 𝑋;,! from 𝑋)' here. Because 𝑋;,! is a specific matrix of independent 239 

variables of an observed point set 𝑂)' during 𝛥𝑡, while 𝑋)' is a general matrix of independent variables of points during 240 

𝛥𝑡. 𝑋;,! is only used for fitting and calibration of STWR, while 𝑋)' can also be used for prediction in STWR. In other 241 

words, we can understand 𝑋;,! as a subclass of 𝑋)'. 𝑊!)' is the 𝑖'ℎ row of the weighted matrix 𝑊)'. 242 

3.3 Reasonable searching range and procedure of optimization  243 

In order to obtain the optimized 𝛼 and 𝜃 for STWR (Equations 8 and 9), the search range should be limited. Here we use 244 

the distance from each regression point 𝑝!
(') to its 𝑀'ℎ nearest neighbor as the initial spatial bandwidth 𝑏(' at 𝑡. The range 245 

of 𝑏(' is within a finite set of discrete values, because the maximum number of nearest neighbor is limited to 𝑁'%! , 𝑖 ∈246 
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{1,2, . . . , 𝑞} for the regression point 𝑝!
(') (𝑁'%! is the total number of observed points at 𝑡 − 𝑖). We denote that value set for 247 

𝑏(' as 𝐵𝑆*' = {𝐷#.&, 𝐷#.-, . . . 𝐷*!}, in which the element 𝐷< , 𝑈 ∈ {𝑘 + 1, 𝑘 + 2, . . . , 𝑁'} denotes the distance from 𝑝!
(') to 248 

the 𝑈'ℎ nearest neighbor, and 𝑘 equals to the number of independent variables. Moreover, the searching range of the 249 

temporal bandwidth 𝑏$ is also limited to a finite discrete set 𝐵𝑇= = {𝛥𝑡&, 𝛥𝑡-, . . . 𝛥𝑡=}, in which the element 𝛥𝑡= is the time 250 

interval from 𝑡 to 𝑡 − 𝜆.  251 

The optimization procedure is to traverse the set 𝐵𝑇=, and for each step we further traverse the set 𝐵𝑆*' to get the 252 

optimized 𝛼 and 𝜃 through trials. Some trials of 𝜃 may lead to no solution to Equation 11, because there might be less than 253 

(𝑘 + 1)'ℎ neighbors within the radius of 𝑏(' − 𝜃𝛥𝑡= from the regression point. Therefore, if it occurs at time stage 𝑡 − 𝜆, 254 

the spatial bandwidth 𝑏(' − 𝜃𝛥𝑡= needs to be extended to the distance from its (𝑘 + 1)'ℎ nearest neighbor to the regression 255 

point, to guarantee the matrix in Equation 11 to be nonsingular. 256 

 257 

 258 

Fig. 2. Weight matrix 𝑊)'. The symbol 𝑝#
('%!), 𝑖 ∈ {0,1, . . . 𝑞}, 𝑘 ∈ {1,2, . . . 𝑁'%!} denotes the 𝑘'ℎ observed point at 𝑡 − 𝑖. 259 

The symbol 𝑤
)',11

(!)12
(!"()

'%! , 𝑖 ∈ {0,1, . . . 𝑞},𝑚 ∈ {1,2, . . . 𝑁'}, 𝑛 ∈ {1,2, . . . , 𝑁'%!} denotes the weight of the 𝑛'ℎ point 𝑝9
('%!) at 260 

𝑡 − 𝑖 to the 𝑚'ℎ point 𝑝?
(') at 𝑡.The symbol 𝑂*!"( , 𝑖 ∈ {0,1, . . . 𝑞} denotes a set of points observed at 𝑡 − 𝑖. 𝛥𝑡 denotes all 261 

the time intervals of the weight matrix. In the central and right parts of the figure, the records with background shading 262 

indicate weight values affected by temporal effects. 263 
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 264 

3.4 Steps of using STWR for prediction 265 

In this paper, STWR is used to predicate the current values of regression points with known coordinates. The prediction 266 

formulas of STWR are more complicated than GWR because the spatial distance is calculated directly from the regression 267 

point to each observed data point, while the time distance between the regression point and the data points observed in the 268 

past cannot be calculated directly. Therefore, we specify a few steps for the prediction in STWR. First, we need to have the 269 

optimized initial spatial bandwidth 𝑏(', the optimized 𝛼 and 𝜃, the optimized number of time stages model used and the 270 

fitted weight matrix. Second, all data points within the limited distance of spatial bandwidth at the latest time stage should be 271 

found for the regression point. Third, all the temporal weights of these data points need to be retrieved from the established 272 

weight matrix (Fig. 2). Fourth, we use these retrieved weights to calculate (e.g., use mean value or inverse distance 273 

weighting value) the temporal weight on the regression point. Fifth, by combining with the calculated spatial weight and the 274 

optimized 𝛼 and 𝜃, we can calculate the spatiotemporal weight on the regression point. Then the value of the regression 275 

point can be calculated. 276 

 277 

4 Experiments with Simulated Data 278 

4.1 Simulation design 279 

To verify the performance of STWR and compare with the results of GWR and GTWR, several groups of simulated data 280 

were used in this study to represent different types of heterogeneity in space and time. All the data and code used in the 281 

experiments are shared on GitHub. Web links are provided at the end of this manuscript.   282 

For GTWR, we only compared with the results generated by algorithms in Huang et al. (2010) and Wu et al. (2014), 283 

because we did not find the software package of Fotheringham et al. (2015). The data generating process (DGP) and the 284 

spatial heterogeneity are introduced here. The basic DGP is a linear model shown in Equation 1 and the study area is a 285 

regular 25×25 lattice. We defined three initial surfaces to represent the spatial heterogeneity of parameters (Fig. 3), which 286 

were generated by Equations 13, 14 and 15, respectively (Fotheringham et al., 2017). Through Equation 1, the two 287 

independent variables 𝑥& and 𝑥- were initially generated randomly from the normal distribution 𝑥&!9!'!@A~𝑁(100, 8) and 288 
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𝑥-!9!'!@A~𝑁(50,6), respectively. They can be set as any other values, and the mean values of both distributions may change 289 

over time. The error term was generated from a normal distribution 𝜀~𝑁(0,0.5). 290 

𝛽"(Bℎ)' = 3                                       (13) 291 

𝛽&(Aℎ)' = 1 + &
&-
(𝑢, 𝑣)                       (14) 292 

           𝛽-(ℎℎ)' = 1 + &
C-D

[36 − (6 − 𝑢/2)-][36 − (6 − E
-
)-]          (15) 293 

 294 

 295 

Fig. 3. Three simulated initial surfaces for representing spatial heterogeneity of parameters. 296 

 297 

Several trends were designed to simulate the value change. For a better simulation, we assumed that value variation can 298 

also be spatial heterogeneity. To distinguish from the heterogeneity of the coefficient surface, three other heterogeneity trend 299 

functions were defined by Equations 16, 17 and 18. 300 

                       𝑇&𝑉'.)' = 𝑉' + 𝜑 ∗ 𝑠𝑖𝑛( 𝑣/4)𝛥𝑡91FG/:              (16) 301 

                   𝑇-𝑉'.)' = 𝑉' + 𝜑 ∗ 𝑠𝑖𝑛[ 1/10𝜋𝑢]𝛥𝑡91FG/:         (17) 302 

                   𝑇C𝑉'.)' = 𝑉' + 𝜑 ∗ 𝑠𝑖𝑛[ 1/6𝜋(𝑢 + 𝑣)]𝛥𝑡91FG/:      (18) 303 

In the above equations, 𝑉' denotes the value at time stage t, 𝜑 is used for adjusting the magnitude of change, 𝛥𝑡91FG/: 304 

denotes value change with the 𝑛'H power of time interval, and 𝑇!𝑉'.)' , 𝑖 ∈ {1,2,3} denotes the 𝑉 value at time stage 𝑡 +305 
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𝛥𝑡, which is the result of the 𝑖'H trend function from the 𝑉'. Fig. 4 shows these trends when 𝜑, 𝑉', and 𝛥𝑡91FG/:are set to 306 

one. 307 

 308 

Fig. 4. Three heterogeneity trend surfaces. 309 

 310 

Our goal of this experiment was to test model performance by using sample data from the simulation process at 311 

different time. Three case studies were designed for different situations. Besides the spatial heterogeneity trends, in our 312 

simulation design we assumed that the mean values of two independent variables 𝑥& and 𝑥- also changed over time, which 313 

were generated by Equations 19 and 20, respectively. 314 

       𝑇&𝑥?'.)' = 𝑥?' ± 𝜂& ∗ 𝛥𝑡                            (19) 315 

             𝑇-𝑥?'.)' = 𝑥?' ± 𝜂- ∗ 𝛥𝑡                 (20) 316 

In the above two equations, 𝑥?' denotes the mean of an independent variable 𝑥 at time stage 𝑡, 𝑇!𝑥?'.)' , 𝑖 ∈ {1,2} denotes 317 

the mean of 𝑥 at time stage 𝑡 + 𝛥𝑡, and 𝜂& and 𝜂- are two parameters for adjusting the rate of change. At each time stage 318 

during the simulations, the independent variables 𝑥& and 𝑥- are generated by a normal distribution with new means of 319 

𝑇&𝑥?'.)' and 𝑇-𝑥?'.)', respectively. 320 

4.2 Results with simulated data 321 

We compared the results of OLS, GWR, GTWR, and STWR. A total of 333 random sample points for five time stages 322 

(𝑡", 𝑡&, 𝑡-, 𝑡C, 𝑡D from old to new) were collected from the 25×25 lattice generated in the above-mentioned DGP. To simplify 323 

the calculation process, we set 𝜃 of Equation 7 to zero. Due to the limitation of paper length, in the comparison below the 324 
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STWR results only include those generated by the spatiotemporal kernel in Equation 8. The objective is to compare the 325 

predicted results with the true value at the latest time stage. 326 

4.2.1 Case study 1  327 

The time interval of observations in case study 1 was one unit, such as one second or one day. The value change of 𝑥& and 328 

𝑥- were generated by 𝜂& = 0.5 and 𝜂- = 0.1, and were affected by 𝑇&𝑉 with 𝜑 = 0.5 and 𝑛𝑝𝑜𝑤𝑒𝑟 = 1. This means that 329 

𝑥& and 𝑥- only changed slightly over time. Table 1 presents the results of the global OLS, GWR, GTWR and STWR at the 330 

latest time stage, i.e., stage 5. It shows that the sum of squared errors (SSE) of prediction in STWR is much lower than the 331 

other models in at least one magnitude. In addition, the AICc scores (Equation 10) also shows that STWR outperforms 332 

GTWR and GWR. As shown in Table 1, the R2 (R-squared) value increases from 13.8% in OLS to 94.2% in GWR, 94.9% 333 

in GTWR, and 99.3% in STWR. The estimated standard error, Sigma, reduces to 4.292 in STWR from 23.331 in GTWR. 334 

Also, Fig. 5 shows that both the prediction surface (Y_pred) and the prediction error surface (Pred_Error) of STWR are more 335 

accurate than those in GWR. Due to the limitation of the software package in Huang et al. (2010) and Wu et al. (2014), we 336 

did not generate images for GTWR in Fig. 5, but the result can be seen from the Sigma value in Table 1.  337 

 338 

Table 1. Results of case study 1 at time stage 𝑡D. 339 

Time stage 𝒕𝟒 SSE AICc R2 Sigma 

OLS 676366.268 805.455 0.138  

GWR 45674.420 705.529 0.942 33.277 

GTWR 40056.823 616.641 0.949 23.331 

STWR 5761.109 528.860 0.993 4.293 

 340 
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 341 
Fig. 5. Comparing prediction results of STWR and GWR in case study 1. Images a1, b1, and c1 are the simulation surfaces 342 

of true Y, the predicted surface of Y by STWR, and the predicted surface of Y by GWR, respectively. Images a2, b2, and c2 343 

are the surface of simulation error, the surface of prediction error of STWR, and the surface of prediction error of GWR, 344 

respectively. 345 

 346 

4.2.2 Case study 2 347 

The time interval of observations in case study 2 was 10 units. The value change of 𝑥& was generated by 𝜂& = 0.5 and 348 

affected by 𝑇C𝑉 with 𝜑 = 0.5 and 𝑛𝑝𝑜𝑤𝑒𝑟=2. 𝑥- was generated by 𝜂-=2 and affected by 𝑇-𝑉 with 𝜑 = 1 and 𝑛𝑝𝑜𝑤𝑒𝑟 349 

= 1, which denotes that 𝑥& and 𝑥- changed fast over time. Table 2 shows the results of the global OLS, GWR, GTWR and 350 

STWR at the time stage 5. The SSE value in STWR is much lower than other models, and STWR has the highest R2 value 351 

0.995. The Sigma value of STWR is 13.299, which is the lowest and less than one-fifth of the Sigma in GWR and less than 352 

one-sixth of the Sigma in GTWR. Besides, the AICc scores show that STWR significantly outperforms GTWR and GWR.  353 
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STWR utilized data from the latest three time stages to calibrate the model. The initial spatial bandwidth 𝑏(' of STWR 354 

was three nearest neighbors, which was smaller than the one in GWR with 15 nearest neighbors. The optimized 𝛼 of STWR 355 

was 0.08, which shows that the effect of used observed points to their local regression points was mainly determined by their 356 

spatial distance. In this case, the GWR outperforms GTWR, which may due to the higher ratio of value change. Compared 357 

with the y_true surface, the predict surface of STWR is much better than GWR (Fig. 6). For the same reason as mentioned in 358 

case study 1, we did not generate images for GTWR in Fig. 6.  359 

 360 

Table 2. Results of case study 2 at time stage 𝑡D. 361 

Time stage 𝒕𝟒 SSE AICc R2 Sigma 

OLS 5085961.816 938.610 0.494  

GWR 300088.969 840.178 0.970 87.201 

GTWR 627011.021 895.6621222 0.938 127.821 

STWR 52688.545 709.573 0.995 13.299 

 362 
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 363 

Fig. 6. Comparing prediction results of STWR and GWR in case study 2. Images a1, b1, and c1 are the simulation surfaces 364 

of true Y, predicted surface of Y by STWR, and predicted surface of Y by GWR, respectively. Images a2, b2, and c2 are the 365 

surface of simulation error, the surface of prediction error of STWR, and the surface of prediction error of GWR, 366 

respectively. 367 

 368 

4.2.3 Case study 3 369 

The time interval of observations in case study 3 was 200 units. In both case studies 1 and 2, the coefficients in Equation 1 370 

were unchanged. In contrast, in case study 3, three surfaces of coefficients changed over time, which were generated by the 371 

trends 𝑇&𝑉, 𝑇-𝑉, and 𝑇C𝑉, respectively. The variations of coefficients were assumed to be slow. The 𝜑 and 𝑛𝑝𝑜𝑤𝑒𝑟 in 372 

each trend were set to be 0.2 and 1, respectively. Both 𝜂& and 𝜂- were set to be 0.5. The dynamic process of the three 373 

surfaces of coefficients and the y_true surface at each time stage are shown in Fig. 7. The process in case study 3 is more 374 

complicated than a general process, but it may be closer to reality.  375 

 376 
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 377 

Fig. 7. Dynamic process of three surfaces of coefficients and the y_true surface at five different time stages. 378 

 379 

Results of these comparisons in case study 3 show that STWR outperforms both GWR and GTWR in accuracy of 380 

model and effectiveness of simulation process (Fig. 8a). Along with the change of the coefficients and the increase of 381 

𝑥&	and	𝑥-, the R2 values of both GWR and GTWR are consistent in the five time stages, showing an overall downward 382 

trend. But the R2 of STWR is stable and is at a high level among the five time stages. At the beginning stage 𝑡", the R2 383 

values of the three models are similar because there are no previous observations that can be used by STWR and GTWR. 384 
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The small difference among these models at 𝑡" may be caused by their different searching range of spatial bandwidth. 385 

Starting from time stage 𝑡&, STWR and GTWR can borrow points from previous observations. At time stage 𝑡&, STWR 386 

outperforms both GWR and GTWR, and the advantage of STWR becomes more obvious in the later stages.  387 

It may seem strange that GWR can outperform GTWR (Fig. 8), but that is reasonable for the process in case study 3. 388 

The change of this process is faster; and the time interval of observations is bigger than the previous case studies. STWR is 389 

not only able to deal with time intervals, but also to make full use of the value variation of observed points for calibration. In 390 

contrast, GTWR only uses the time interval information and all the observed points to calibrate, which may cause problems 391 

when the observed values are significantly different in spatial distribution or the time intervals are long. GTWR makes use of 392 

points from previous time stages without considering their variation, but if the actual values are quite different from previous 393 

observations at the current time stage, all the point values for the calibration of GTWR will become smooth. Thus, GWR 394 

outperforms GTWR in this situation because GWR only uses the current data points for model calibration.  395 

STWR is better for estimation than GWR and GTWR because its Sigma value is much smaller. As shown in Fig. 8b, 396 

the Sigma of STWR was half of GWR at time stage 𝑡&, and even less than a third of GWR at time stage 𝑡D. The results show 397 

that the advantage of STWR is obvious comparing with GWR and GTWR. 398 

 399 

 400 
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Fig. 8. Comparing and evaluating the performance of GWR, GTWR and STWR at five time stages. (a) Comparing the R2 401 

value of different models; (b) Comparing the Sigma value of different models. 402 

 403 

At 𝑡D, STWR used data from all the past time stages to calibrate the model, and its optimized (initial) spatial bandwidth 404 

𝑏(' was derived from four nearest neighbors, which was smaller than the one in GWR with 25 nearest neighbors. The 405 

optimized 𝛼 of STWR was 0, which means that STWR only borrowed points from past time stages without considering 406 

their temporal weights to each regression point at 𝑡D. The predict surfaces at time stage 𝑡D is shown in Fig. 9. The Y_pred 407 

surface of STWR is much better than GWR, especially in the middle and bottom left parts of the surface. The Pred_Error of 408 

STWR is also much lower than GWR at almost every location. In this case, the 𝛼 of STWR at each time stage was 0, 0.96, 409 

0, 0.07, and 0, respectively. These values indicate that the temporal effects are different at each stage. They also show that 410 

the value of 𝛼 can be adaptive to scale the temporal and spatial effects (see Equation 3). 411 

As Fig. 10 shows, the optimized bandwidths are quite different among these models, and the bandwidths of GWR and 412 

GTWR are larger than the initial bandwidth of STWR at each time stage. The optimized bandwidth for each time stage refers 413 

to an optimized number of the nearest neighbors (see Section 3.3). As GTWR considers all the nearest neighbors from 414 

different time stages, the optimized numbers of the nearest neighbors (bandwidth) grow fast, and exceed the GWR model at 415 

time stage 𝑡-. However, the actual distance from the observed points to the regression points is not necessarily farther. The 416 

initial optimized numbers of the nearest neighbor of STWR are smaller than those in GWR and GTWR, which means that 417 

the initial spatial bandwidth is narrower than the bandwidth of GWR and GTWR. Nevertheless, due to the strategy of 418 

borrowing points from nearby neighbors of past observations, the total points for model calibration in STWR may still be 419 

more than GWR and GTWR. Therefore, the initial optimized numbers of the nearest neighbors in STWR are kept at a lower 420 

level, which means it is more localized than GWR in this sense.  421 

 422 
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 423 

Fig. 9. Comparing prediction results of STWR and GWR in case study 3. Images a1, b1, and c1 are the simulation surfaces 424 

of true Y, the predicted surface of Y by STWR, and the predicted surface of Y by GWR, respectively. Images a2, b2, c2 are 425 

the surface of simulation error, the surface of prediction error of STWR, and the surface of prediction error of GWR, 426 

respectively. 427 

 428 
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 429 

Fig. 10. Optimized bandwidths (or initial bandwidths) of GWR, GTWR and STWR for the five time stages in case study 3. 430 

 431 

5 Experiments with Real-world Data 432 

To further test the performance of STWR, we used data of precipitation δ2H isotopes in Northeastern United States in 433 

another case study. We chose δ2H data in three days from October 29 to 31, 2012, which have enough spatiotemporal data 434 

for the test. Here in the comparison the STWR results only include those generated by the spatiotemporal kernel in Equation 435 

8. Data and code used here are shared on Zenodo (See DOI and web links in the ‘Code and data availability’ section at the 436 

end of the main text of this article). 437 

In the experiments, we collected a total of 782 measurements from 116 sites located in Northeastern United States 438 

during the three-day period, and prepared the data on a daily average. The daily precipitation, mean temperature, and 439 

elevation were used as explanatory variables. The model derived from Equation 1 is represented below.  440 

                     𝑦! = 𝛽" + 𝛽&𝑝𝑝𝑡 + 𝛽-𝑡𝑚𝑒𝑎𝑛 + 𝛽Cℎ𝑒𝑖𝑔ℎ𝑡 + 𝜀!                       (22)       441 

In Equation 22, 𝑝𝑝𝑡 denotes the daily total precipitation (rain + melted snow), 𝑡𝑚𝑒𝑎𝑛 denotes daily mean temperature, and 442 

ℎ𝑒𝑖𝑔ℎ𝑡 is the elevation value. After data preprocessing, there were 272 points for model calibration and 73 points values on 443 
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October 31, 2012. For the first day, both GTWR and STWR took no information from the past. Therefore, we only show the 444 

results of SSE, R2 and the optimized initial neighbor (bandwidth) in the model comparisons for the second and third day (D2 445 

and D3) in Tables 3. The SSE of STWR is the lowest at both days. GWR shows a slightly higher SSE than GTWR at D2 and 446 

D3. The R2 of STWR is the highest at both days among these models. GWR has lower R2 than GTWR at D2, and almost the 447 

same R2 as GTWR at D3.  448 

Similar to the experiments on three simulation datasets, the result here shows that STWR outperforms GTWR and 449 

GWR. In the experiment, the number of optimized initial neighbors of STWR was smaller than that of GWR and GTWR. 450 

The optimized 𝛼 of STWR was 0 at both D2 and D3. The optimized temporal bandwidths of STWR (number of time stages 451 

model used) in both D2 and D3 were 2, which means that the STWR in this case only borrowed data points from the latest 2 452 

time stages for D2 and D3. In the result (Table 3), an interesting part to see is that the numbers of optimized initial neighbors 453 

of STWR are smaller than the spatial bandwidths of GWR for D2 and D3. The reason is that STWR borrowed points from 454 

past time stages in the calculation, which led to narrower bandwidths to some extent. 455 

 456 

Table 3. Results of model performance with real-world data. 457 

Model SSE-D2 SSE-D3 R2-D2 R2-D3 
Neighbor Neighbor 

-D2  -D3  

OLS 58711.528 52669.399 0.595 0.502 
  

GWR 33576.400 33043.921 0.769 0.688 52 43 

GTWR 32659.808 31967.850 0.775 0.698 37 31 

STWR 24022.226 25118.096 0.834 0.763 16 16 

 458 

We adopted Leave-one-out cross-validation (LOOCV) at D3 for the comparison between STWR and GWR. The 459 

squared errors (SE) of prediction are shown in Fig. 11. The prediction results of STWR are better than GWR for most points. 460 

The mean SE of STWR is smaller than GWR. Moreover, the SE of STWR shows a narrower regional trend, which indicates 461 
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that STWR is more robust than GWR. In addition, the total SSE of GWR and STWR are 50216.510 and 39724.995, 462 

respectively. Therefore, the result further validates that the quality of predication in STWR is better than GWR. 463 

 464 

 465 
Fig. 11. LOOCV results of STWR and GWR. (a) Squared error of prediction at each point (leave out); (b) Box plot of the 466 

LOOCV results of GWR and STWR. 467 

 468 

In Fig. 12, the predicted δ2H surface at D3 is broadly similar between the GWR and STWR calibrations. The 469 

percentages of explanation of variance in GWR and STWR are similar, which are 68.8% and 76.3%, respectively. However, 470 

like the experiment results with simulated data (Fig. 10), STWR has narrower initial bandwidth, which generates more 471 

localization in the predicted δ2H surface than GWR. For instance, the lower (light yellow and blue parts) or higher (orange 472 

parts) predicted values of δ2H are more concentrated in the δ2H surface of STWR than that of GWR (Fig. 12). 473 

 474 
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 475 

Fig. 12. Predicted δ2H surfaces of STWR and GWR at D3. 476 

 477 

6 Discussion and Conclusions 478 

Spatiotemporal data analysis is important in many scientific studies. Due to the complexity of spatiotemporal models, 479 

spatiotemporal effect may not be fully taken into account when the temporal and spatial information is manipulated 480 

simultaneously. In particular, the models for the effect of spatial dynamics should not be simply adapted for modeling the 481 

effect of temporal dynamics. Although the GTWR model can borrow points from the near recent, without careful 482 

consideration of temporal effect, the performance of GTWR may even be worse than GWR. Increasingly, many scientific 483 

issues are not just about spatial non-stationary but involve many spatiotemporal processes. It is necessary to review the 484 
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limitation of the current spatiotemporal models and make new extensions. The aim of the STWR model developed in this 485 

study is to advance the work and discussion in that direction. 486 

The temporal kernel and the spatiotemporal kernel functions are two important contributions of STWR. The temporal 487 

kernel in STWR applies an improved sigmoid form (see Equation 4), which is different from the methods for temporal effect 488 

analysis in previous GTWR models. The temporal weight generated by the STWR temporal kernel is limited as a value 489 

between 0 and 1. The spatial weight in STWR is also limited as a value between 0 and 1. The STWR spatiotemporal kernel 490 

function has a weight adjustment parameter 𝛼 to scale the temporal and spatial weights (Equation 3). In practice, 𝛼 can be 491 

obtained through optimization. This form of weighted average between temporal and spatial effects in the STWR 492 

spatiotemporal kernel is a big improvement comparing with the multiplication form in previous GTWR models. The 493 

advantage of the STWR spatiotemporal kernel has been proven in four case studies with both simulated and real-world 494 

datasets.   495 

 Though the performance of STWR is outstanding, the models can still be further extended. A big topic is about the time 496 

distance. In the current STWR, the time distance represents the rate of value variation between an observed point and a 497 

regression point through a time interval. Nevertheless, we can also use time distance to represent the rate of value variation 498 

at each observed point object through time. Note that, from an object-oriented perspective, here we differentiate the point 499 

objects from locations, although the point objects have geospatial coordinates as part of their attributes. Following that new 500 

definition of time distance, the 𝑦!(') − 𝑦+('%4) in the STWR temporal kernel (Equation 4) can be replaced by Δ𝑦+('%4) 501 

(value variation of an observed point object during 𝛥𝑡). A scenario of interest is that, the observed point objects in the past 502 

time stages (such as those shown in Fig. 1) may move to new locations, have no value for a few time stages, or even 503 

disappear, so the Δ𝑦+('%4) may not exist. We can use object-based methods to address issues caused by that scenario. For 504 

example, each point object can be assigned with a unique ID, and then the observed value of the point object at each time 505 

stage can be retrieved by using its ID. With this new definition of time distance, the temporal weight on a regression point 506 

object is determined by the rate of value variation of its nearby point objects. Several different scenarios for a regression 507 

point object at current time stage 𝑡 are discussed here. 508 
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(1) The location of an observed point object 𝑗 is fixed through time (e.g., a fixed sensor). If the value of 𝑗 is observed 509 

at both time stages 𝑡 and 𝑡 − 𝑞, then Δ𝑦+('%4)	can be calculated directly. If the value of 𝑗 is observed at 𝑡 but not 510 

observed at 𝑡 − 𝑞, we can use interpolation to generate a value for 𝑗 at 𝑡 − 𝑞. If the value of 𝑗 is not observed at 𝑡, but 511 

the variation in the past is observed, we can use prediction methods to generate a value for 𝑗 at 𝑡. 512 

(2) The location of 𝑗 is not fixed through time (i.e., 𝑗 moves). The moving point objects can still have temporal 513 

effects to the regression point, then the Δ𝑦+('%4)	can be calculated. The spatial effect, however, depends on whether 𝑗 514 

moves out of the spatial bandwidth from the regression point or not.  515 

(3) 𝑗 disappears or appears at a certain time stage. If 𝑗 does not appear until the current time stage 𝑡, the Δ𝑦+('%4)	can 516 

be set to be 0. If 𝑗 appears in a past time stage (e.g., 𝑡 − 𝑞) but it disappears before or at 𝑡, we can ignore the impact of 𝑗 517 

for the regression point object. 518 

There are other possibilities for the further improvement of STWR. The first is about the optimization of 𝜃 in the 519 

spatiotemporal kernel (Equations 8 and 9). The slope 𝜃 indicates that the variation of the spatial bandwidth is in a linear 520 

form, but it may not be a perfect solution. In many situations, the change of the spatial bandwidth over time may not be 521 

linear. The second is about making predications for future time stages. In this paper, we only predict values for points at the 522 

current time stage 𝑡. Extensions can be made in STWR to predict values for points in future time stages beyond 𝑡. The third 523 

future work is about exploring multiple spatial and temporal bandwidths of models. Different variables may have different 524 

spatial and temporal bandwidths due to their unique characteristics. Correspondingly, we may need more bandwidths to 525 

capture the different non-stationarities of those independent variables, to better represent the spatiotemporal heterogeneity.  526 

In short, the core contribution of STWR is the clarification of the ‘time distance’ concept and the new temporal kernel 527 

and spatiotemporal kernel functions based on this concept. Our experiments show that STWR outperforms GWR and GTWR 528 

in analyzing and interpreting local spatiotemporal non-stationarity. We hope STWR can bring fresh ideas and new 529 

capabilities for spatiotemporal data analysis in many disciplines. 530 

 531 
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The Python source code of STWR v1.0, the data used in the experiments and all the case studies (written in Jupyter 533 

Notebook) were archived on Zenodo and made freely accessible via http://doi.org/10.5281/zenodo.3637689. Data source of 534 

water isotopes δ2H is on the website: http://wateriso.utah.edu/waterisotopes/pages/spatial_db/SPATIAL_DB.html. The data 535 

of daily precipitation and mean temperature were collected from the PRISM Climate Group 536 

(http://www.prism.oregonstate.edu), and the elevation data were collected from the GMTED2010 537 

(https://topotools.cr.usgs.gov/gmted_viewer/viewer.htm) at U.S. Geological Survey (USGS). 538 
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